### Sparse Network Estimation

### Olga Klopp





イロト イポト イヨト イヨト

Olga Klopp (ESSEC & CREST)

Sparse Network Estimation

### Joint works with



Alexandre Tsybakov



#### Nicolas Verzelen



Solenne Gaucher



Geneviéve Robin

イロン イ理 とくほとう ほんし

Olga Klopp (ESSEC & CREST)

э

# Network model

Network analysis has become an important research field driven by applications in social sciences, computer sciences, statistical physics, biology,...



East-river trophic network [Yoon et al.(04)]

#### Approach

• The modeling of real networks as random graphs.

< □ > < □ > < □ > < □ > < □ > < □ >

 Model-based statistical analysis.

# **Graph Notations**

A (simple, undirected graph)  $\mathcal{G} = (\mathcal{E}, \mathcal{V})$  consists of

- a set of vertices  $V = \{1, \dots n\}$
- a set of edges  $E \subset \{\{i, j\} : i, j \in V \text{ and } i \neq j\}$



< ロ > < 同 > < 回 > < 回 > < 回 > <

# Graph Notations

A (simple, undirected graph)  $\mathcal{G} = (\mathcal{E}, \mathcal{V})$  consists of

- a set of vertices  $V = \{1, \dots n\}$
- a set of edges  $E \subset \{\{i, j\} : i, j \in V \text{ and } i \neq j\}$



The corresponding adjacency matrix is denoted  $\mathbf{A} = (\mathbf{A}_{i,j}) \in \{0,1\}^{n \times n}$ , where  $\mathbf{A}_{i,j} = 1 \Leftrightarrow (i,j) \in E$ 

- ロ ト - (周 ト - (日 ト - (日 ト - )日

# Sparsity

Main integral characteristics

- number of vertices n
- number of edges |E|

3

イロン イ理 とくほとう ほんし

# Sparsity

Main integral characteristics

- number of vertices n
- number of edges |E|

Maximal number of edges  $\frac{n(n-1)}{2}$ 

3

イロン イ理 とくほとう ほんし

# Sparsity

Main integral characteristics

- number of vertices n
- number of edges |E|

Maximal number of edges  $\frac{n(n-1)}{2}$ 

- Dense graph  $|E| \asymp n^2$
- Real world networks are sparse :  $|E| = o(n^2)$ 
  - more difficult to handle

イロト 不得 トイヨト イヨト 二日

# Stochastic Block-Model (SBM) Holland et al. (1980)

- Fit observed networks to parametric or non-parametric models of random graphs.
- **SBM** popular in applications: it allows to generate graphs with a community structure
  - Parameters:
    - ★ Partition of n nodes into k disjoint groups  $\{C_1, \ldots, C_k\}$
    - ★ Symmetric  $k \times k$  matrix Q of inter-community edge probabilities.
  - Any two vertices  $u \in C_i$  and  $v \in C_j$  are connected with probability  $Q_{ij}$ .
  - Regularity Lemma: basic approximation units for more complex models.

イロト 不得 トイヨト イヨト 二日

- SBM does not allow to analyze the fine structure of extremely large networks, in particular when the number of groups is growing.
- Non-parametric models of random graphs: Graphon Model
  - Graphons are symmetric measurable functions

$$W:[0,1]^2\to [0,1].$$

- Play a central role in the recent theory of graphs limits: every graph limit can be represented by a graphon.
- Graphons give a natural way of generating random graphs.

# Graphon Model

#### • Graphon Model:

•  $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n)$  are latent i.i.d. uniformly distributed on [0, 1].

$$\Theta_{ij} = W_0(\xi_i, \xi_j).$$

- The diagonal entries  $\boldsymbol{\Theta}_{ii}$  are zero and  $\boldsymbol{\Theta}_0 = (\boldsymbol{\Theta}_{ij})$
- Given Θ<sub>0</sub> the graph is sampled according to the inhomogeneous random graph model:
  - ★ vertices i and j are connected by an edge with probability Θ<sub>ij</sub> independently from any other edge.
- ► If W<sub>0</sub> is a step-function with k steps, the graph is distributed as a SBM with k groups.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

# Sparse Graphon Model

- The expected number of edges  $\asymp n^2 \Rightarrow$  dense case.
- In real life networks often sparse
- Sparse Graphon Model:
  - Take  $\rho_n > 0$  such that  $\rho_n \to 0$  as  $n \to \infty$ .
  - The adjacency matrix A is sampled according to graphon W<sub>0</sub> with scaling parameter ρ<sub>n</sub>:

$$\Theta_{ij} = \rho_n W_0(\xi_i, \xi_j), \ i < j.$$

•  $\rho_n =$  "expected proportion of non-zero edges",

- the number of edges is of the order  $O(\rho_n n^2)$ ,
  - ★  $\rho_n = 1$  dense case
  - ★  $\rho_n = 1/n$  very sparse

イロト 不得 トイヨト イヨト 二日

# Network Model

From a single observation of a graph

#### Problem 1:

Estimate the matrix of connection probabilities  $\Theta_0$ 

#### and

#### Problem 2:

Estimate the sparse graphon function  $f_0(x,y) = \rho_n W_0(x,y)$ 

- We observe the n imes n adjacency matrix  $\mathbf{A} = (\mathbf{A}_{ij})$  of a graph
- A has been sampled according to the inhomogeneous random graph model with a fixed matrix  $\Theta_0$  or to the graphon model with graphon  $W_0$
- Given a single observation  $\mathbf{A}$ , we want to estimate  $\mathbf{\Theta}_0$  or  $f_0$ .

・ロト ・ 同ト ・ ヨト ・ ヨト

# Graphon: invariance with respect to the change of labeling

- Graphon estimation is **more challenging** than probability matrix estimation
- Multiple graphons can lead to the same distribution on the space of graphs of size *n*.
- The topology of a network is **invariant with respect to any change** of labeling of its nodes
- We consider **equivalence classes** of graphons defining the same probability distribution on random graphs.

- 4 回 ト 4 ヨ ト 4 ヨ ト

# Loss function for graphon estimation

- Consider a sparse graphon  $f(x,y) = \rho_n W(x,y)$
- $\tilde{f}(x,y)$  estimator of f(x,y)
- The squared error is defined by

$$\delta^2(f,\tilde{f}) := \inf_{\tau \in \mathcal{M}} \int \int_{(0,1)^2} |f(\tau(x),\tau(y)) - \tilde{f}(x,y)|^2 \mathrm{d}x \mathrm{d}y$$

 ${\mathcal M}$  is the set of all measure-preserving bijections  $\tau:[0,1]\to [0,1]$ 

#### Property (Lovász 2012)

 $\delta(\cdot, \cdot)$  defines a metric on the quotient space  ${\mathcal W}$  of graphons.

イロト イヨト イヨト ・

### Minimax rate for sparse SBM in Frobenius norm

K., Tsybakov & Verzelen (2017)

$$\inf_{\widehat{\boldsymbol{\Theta}}} \sup_{\boldsymbol{\Theta}_0 \in \mathcal{T}[k,\rho_n]} \mathbb{E}_{\boldsymbol{\Theta}_0} \left[ \frac{1}{n^2} \left\| \widehat{\boldsymbol{\Theta}} - \boldsymbol{\Theta}_0 \right\|_2^2 \right] \asymp \min\left\{ \rho_n \left( \frac{\log k}{n} + \frac{k^2}{n^2} \right), \rho_n^2 \right\}$$

•  $\rho_n = 1$  : Gao et al.(2014), the minimax rate over  $\mathcal{T}[k, 1]$ 

$$\frac{k^2}{n^2} + \frac{\log k}{n}$$

$$k > \sqrt{n \log(k)} : \text{ nonparametric rate } \frac{k^2}{n^2}$$

$$k < \sqrt{n \log(k)} : \text{ clustering rate } \frac{\log k}{n}$$

Olga Klopp (ESSEC & CREST)

• • = • • = •

# From probability matrix estimation to graphon estimation

- To any  $n \times n$  probability matrix  $\Theta$  we can associate a graphon.
- Given a n × n matrix Θ with entries in [0, 1], define the empirical graphon f<sub>Θ</sub> as the following piecewise constant function:

$$\widetilde{f}_{\boldsymbol{\Theta}}(x,y) = \boldsymbol{\Theta}_{\lceil nx\rceil,\lceil ny\rceil}$$

for all x and y in (0, 1].



• This provides a way of deriving an estimator of the graphon function  $f(\cdot, \cdot) = \rho_n W(\cdot, \cdot)$  from any estimator of the probability matrix  $\Theta_0$ .

Olga Klopp (ESSEC & CREST)

# From probability matrix estimation to graphon estimation

- Empirical graphon  $\widetilde{f}_{\Theta}(x, y) = \Theta_{\lceil nx \rceil, \lceil ny \rceil}$ .
- For any estimator  $\widehat{\mathbf{T}}$  of  $\boldsymbol{\Theta}_{0}$  :

$$E\left[\delta^{2}(\widetilde{f}_{\widehat{\mathbf{T}}},f)\right] \leq 2E\left[\frac{1}{n^{2}}\|\widehat{\mathbf{T}}-\mathbf{\Theta}_{0}\|_{F}^{2}\right] + 2\underbrace{E\left[\delta^{2}\left(\widetilde{f}_{\mathbf{\Theta}_{0}},f\right)\right]}_{\text{agnostic error}}$$

(from the triangle inequality). Here,  $\tilde{f}_{\widehat{\mathbf{T}}}$  and  $\tilde{f}_{\Theta_0}$  are empirical graphons.

# Bound for the $\delta$ -risk of step-function graphon

Step function graphons: For some  $k\times k$  symmetric matrix  ${\bf Q}$  and some  $\phi:[0,1]\to [k],$ 

$$W(x,y) = \mathbf{Q}_{\phi(x),\phi(y)}$$
 for all  $x, y \in [0,1]$ .

#### Theorem (K., Tsybakov and Verzelen, 2017)

Consider the  $\rho_n$ -sparse step-function graphon model W in  $\mathcal{W}[k]$ . The restricted LS empirical graphon estimator  $\hat{f}$  satisfies

$$E\left[\delta^2\left(\widehat{f}, f\right)\right] \le C\left[\rho_n\left(\frac{k^2}{n^2} + \frac{\log(k)}{n}\right) + \rho_n^2\sqrt{\frac{\mathbf{k}}{\mathbf{n}}}\right]$$

Olga Klopp (ESSEC & CREST)

- The optimal rates can be achieved by the Least Squares Estimator
- But: it is not realizable in polynomial time
- Possible gap between the minimax optimal rate and the best rate achievable by computationally feasible methods?
- Hard thresholding estimator

# Hard thresholding estimator

- Achieves the best known rate in Frobenius distance in the class of polynomial-time estimators
- Singular value decomposition of A:

$$\mathbf{A} = \sum_{j=1}^{\operatorname{rank}(\mathbf{A})} \sigma_j(\mathbf{A}) u_j(\mathbf{A}) v_j(\mathbf{A})^T$$

• Tuning parameter  $\lambda > 0$ :

$$\widetilde{\mathbf{\Theta}}_{\lambda} = \sum_{j:\sigma_j(\mathbf{A}) \geq \lambda} \sigma_j(\mathbf{A}) u_j(\mathbf{A}) v_j(\mathbf{A})^T$$

#### Singular value hard thresholding estimator of $\Theta_0$ .

Olga Klopp (ESSEC & CREST)

<日<br />
<</p>

### Hard thresholding estimator for sparse SBM

Theorem (K. & Verzelen, 2018)

With high probability

$$rac{1}{n} \| \widetilde{oldsymbol{\Theta}}_\lambda - oldsymbol{\Theta}_0 \|_2 \hspace{2mm} \leq \hspace{2mm} C \sqrt{rac{
ho_n {oldsymbol{k}}}{n}} \; ,$$

where C is a numerical constant.

• Also minimax optimal in the cut distance

Olga Klopp (ESSEC & CREST)

### Cut distance

#### • Cut distance:

- Two random graphs with the same edge density are close
- Reflects global and local structural similarities
- Cornerstone in the limit graphs theory (Lovász and Szegedy (2004), Borgs et al (2008), (2012)):

\* Every graph limit can be represented by a graphon

- ★ A sequence (G<sub>n</sub>) of simple graphs is convergent if and only if it is a Cauchy sequence in the cut metric.
- Estimating well the graphon  $W_0$  in the cut distance allows to estimate well the number of small patterns induced by  $W_0$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

### Matrix cut norm

Matrix cut norm ( Frieze and Kannan (1999)): Matrix  $\mathbf{A} = (A_{ij}) \in \mathbb{R}^{n \times n}$ 

$$\|\mathbf{A}\|_{\Box} = \frac{1}{n^2} \max_{S, T \subset [n]} \left| \sum_{i \in S, j \in T} A_{ij} \right|$$

• 
$$S = T$$
,  $S \cap T = \emptyset$  or  $T = \bar{S}$ 

$$\|\mathbf{A}\|_{\square} \leq rac{1}{n^2}\|\mathbf{A}\|_1 \leq rac{1}{n}\|\mathbf{A}\|_2$$

where 
$$\|\mathbf{A}\|_1 = \sum_{i,j} |A_{ij}|$$
 and  $\|\mathbf{A}\|_2 = \sqrt{\sum_{i,j} A_{ij}^2}$ 

Olga Klopp (ESSEC & CREST)

3

イロト イヨト イヨト イヨト

# Cut norm of graphons

Cut norm of graphons
$$\|W\|_{\Box} = \sup_{S,T \subset [0,1]} \left| \int_{S \times T} W(x,y) dx dy \right|$$

- $\bullet \ S$  and T measurable subsets
- $\bullet \ S=T \text{, } S\cap T= \emptyset \text{ or } T=\bar{S}$

• 
$$||W||_{\Box} \le ||W||_1 \le ||W||_2 \le ||W||_{\infty} \le 1$$

Olga Klopp (ESSEC & CREST)

э

・四・・ヨ・・ヨ・

### Probability matrix estimation in cut norm

Minimax rate for sparse SBM in cut norm K. & Verzelen, 2018

$$\inf_{\widehat{\boldsymbol{\Theta}}} \sup_{\boldsymbol{\Theta}_0 \in \mathcal{T}[k,\rho_n]} \mathbb{E}_{\boldsymbol{\Theta}_0} \left[ \left\| \widehat{\boldsymbol{\Theta}} - \boldsymbol{\Theta}_0 \right\|_{\square} \right] \asymp \min \left( \sqrt{\frac{\rho_n}{n}}, \rho_n \right)$$

• Faster than the minimax rate of convergence in Frobenius norm:

$$\inf_{\widehat{\boldsymbol{\Theta}}} \sup_{\boldsymbol{\Theta}_0 \in \mathcal{T}[k,\rho_n]} \mathbb{E}_{\boldsymbol{\Theta}_0} \left[ \frac{1}{n} \| \widehat{\boldsymbol{\Theta}} - \boldsymbol{\Theta}_0 \|_2 \right] \asymp \min\left\{ \left( \sqrt{\frac{\rho_n \log k}{n}} + \frac{\sqrt{\rho_n k}}{n} \right), \rho_n \right\}$$

- Few blocks  $k \lesssim \sqrt{n}$ : gain of  $\log(k)$  factor
- Large  $k \gtrsim \sqrt{n}$ : gain of  $k/\sqrt{n}$  factor

## Graphon estimation problem: step-function graphon

#### Thresholding empirical graphon estimator

$$\mathbb{E}_{W}\left[\delta_{\Box}\left(\widetilde{f}_{\widetilde{\mathbf{\Theta}}_{\lambda}}, f_{0}\right)\right] \leq C\left(\rho_{n}\sqrt{\frac{k}{n\log(k)}} + \sqrt{\frac{\rho_{n}}{n}}\right)$$

- Empirical graphon associated to the hard thresholding estimator is minimax optimal in the cut-distance.
- Achieves best known convergence rates with respect to  $\delta_1$  and  $\delta_2$ -distance among polynomial time algorithms.

# Link Prediction

2

<ロト <回ト < 回ト < 回ト < 回ト -

- Networks are often **incomplete**: detecting interactions can require significant experimental effort
- Replace exhaustive testing for every connection by deducing the pairs of nodes which are most likely to interact
- Predict the probabilities of connections from partial observation of the graph

<日<br />
<</p>

# Maximum Likelihood Estimator

- Wolfe and Olhede (2013), Bickel et al (2013), Amini et al (2013), Celisse et al (2012), Tabouy et al (2017) ...
- Also NP hard ...
- Computationally efficient approximations:
  - Pseudo-likelihood methods
  - Variational approximation
- Quite successful in practice

#### Is MLE minimax optimal?

Olga Klopp (ESSEC & CREST)

通 ト イ ヨ ト イ ヨ ト

# Convergence rate for the MLE

The conditional log-likelihood:

$$\mathcal{L}(\mathbf{A}; \mathbf{\Theta}) = \sum_{i < j} \mathbf{A}_{ij} \log(\mathbf{\Theta}_{ij}) + (1 - \mathbf{A}_{ij}) \log(1 - \mathbf{\Theta}_{ij})$$

Theorem (Gaucher & K., 2019) With high probability

$$\|\boldsymbol{\Theta}_0 - \widehat{\boldsymbol{\Theta}}_{ML}\|_2^2 \le C\rho_n \left( \mathcal{K}(\boldsymbol{\Theta}_0, \widetilde{\boldsymbol{\Theta}}) + \frac{\rho_n^2}{\left(1 - \rho_n\right)^2 \wedge \gamma_n^2} \left(k^2 + n\log(k)\right) \right).$$

• 
$$0 < \gamma_n \le (\Theta_0)_{ij} \le \rho_n < 1$$

- $\Theta$  the best approximation among SBM to  $\Theta_0$  in the sense of the Kullback Leibler divergence
- Minimax optimal if  $\gamma_n \asymp \rho_n$

# Partial observations of the network

•  $\mathbf{X} \in \{0,1\}_{sym}^{n \times n}$  the sampling matrix:

 $\mathbf{X}_{ij} = 1$  if we observe  $\mathbf{A}_{ij}$  and  $\mathbf{X}_{ij} = 0$  otherwise

- Conditionally on  $\Theta_0$ ,  ${f X}$  is independent from the adjacency matrix  ${f A}$
- $\mathbf{X}_{ij}$  are mutually independent
- $\Pi \in [0,1]_{sym}^{n \times n}$  the matrix of sampling probabilities:

 $\mathbf{X}_{ij} \overset{ind.}{\sim} \mathsf{Bernoulli}(\mathbf{\Pi}_{ij})$ 

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Particular cases:

- node-based sampling schemes (e.g. the exo-centered design)
- random dyad sampling schemes

• ...

3

く 白 ト く ヨ ト く ヨ ト

### MLE with missing observations

The conditional log-likelihood:

$$\mathcal{L}_{\mathbf{X}}(\mathbf{A}; \mathbf{\Theta}) = \sum_{i < j} \mathbf{X}_{ij} \left( \mathbf{A}_{ij} \log(\mathbf{\Theta}_{ij}) + (1 - \mathbf{A}_{ij}) \log(1 - \mathbf{\Theta}_{ij}) \right).$$

Theorem (Gaucher & K., 2019) With high probability

$$\|\boldsymbol{\Theta}_0 - \widehat{\boldsymbol{\Theta}}\|_{2,\boldsymbol{\Pi}}^2 \le C' \rho_n \left( \mathcal{K}_{\boldsymbol{\Pi}}(\boldsymbol{\Theta}_0, \widetilde{\boldsymbol{\Theta}}) + \frac{\rho_n^2}{\left(1 - \rho_n\right)^2 \wedge \gamma_n^2} \left(k^2 + n\log(k)\right) \right).$$

• 
$$\|\mathbf{\Theta}_0 - \widehat{\mathbf{\Theta}}\|_{2,\mathbf{\Pi}}^2 = \sum_{ij} \mathbf{\Pi}_{ij} (\mathbf{\Theta}_0 - \widehat{\mathbf{\Theta}})_{ij}^2$$

• Minimax optimal if  $c_1 p \leq \Pi_{ij} \leq c_2 p$  [Gao et al, 2016 ]

イロト イヨト イヨト ・

# Conclusion

#### • Least Squares Estimator:

- attains the optimal rates in a minimax sense,
- not realizable in polynomial time
- better choice: Thresholding estimator (slower rates of convergence)

#### • MLE:

- minimax optimal
- has computationally efficient approximations

#### • Link Prediction:

- MLE: enables rank unobserved pairs of nodes
- Minimax optimality of this approach
- Works for quite general sampling schemes

• • = • • = •



# Thank You !