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Network model

Network analysis has become an important research field driven by

applications in social sciences, computer sciences, statistical physics,
biology,. . .

Approach
@ The modeling of real

networks as random graphs.

@ Model-based statistical
analysis.

East-river trophic network [Yoon et al.(04)]
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Graph Notations

A (simple, undirected graph) G = (£,V) consists of
@ a set of vertices V ={1,...n}

o aset of edges E C {{i,j}:4,7 €V andi#j}

1 2
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The corresponding adjacency matrix is denoted A = (A, ;) € {0,1}"*",

where A;; =1% (i,j) € E
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Sparsity

Main integral characteristics

@ number of vertices n

@ number of edges |F|
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Sparsity

Main integral characteristics

@ number of vertices n

@ number of edges |F|

Maximal number of edges
n(n —1)
2
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Sparsity

Main integral characteristics

@ number of vertices n
@ number of edges |F|
Maximal number of edges
n(n —1)
2
e Dense graph |E| =< n?
o Real world networks are sparse : |E| = o(n?)

» more difficult to handle
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Stochastic Block-Model (SBM) Holland et al. (1980)

@ Fit observed networks to parametric or non-parametric models of
random graphs.

@ SBM popular in applications: it allows to generate graphs with a
community structure
» Parameters:
* Partition of n nodes into k disjoint groups {C1,...,Cx}
* Symmetric k X k matrix @ of inter-community edge probabilities.

> Any two vertices v € C; and v € C} are connected with probability Q;;.

» Regularity Lemma: basic approximation units for more complex
models.
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Non-parametric Model

@ SBM does not allow to analyze the fine structure of extremely large
networks, in particular when the number of groups is growing.

@ Non-parametric models of random graphs: Graphon Model
» Graphons are symmetric measurable functions
W :[0,1]* — [0,1].

» Play a central role in the recent theory of graphs limits: every graph
limit can be represented by a graphon.

» Graphons give a natural way of generating random graphs.
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Graphon Model

@ Graphon Model:

» £=(&,...,&,) are latent i.i.d. uniformly distributed on [0, 1].

O = Wo(&,&5)-
» The diagonal entries ®;; are zero and @ = (©;;)

> Given ©¢ the graph is sampled according to the inhomogeneous
random graph model:

* vertices 7 and j are connected by an edge with probability ©;;
independently from any other edge.

> If Wy is a step-function with k steps, the graph is distributed as a SBM
with k groups.
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Sparse Graphon Model

2 = dense case.

@ The expected number of edges < n
@ In real life networks often sparse
@ Sparse Graphon Model:

» Take p, > 0 such that p, — 0 as n — oc.

» The adjacency matrix A is sampled according to graphon W with
scaling parameter p,,:

O = pWo(&i,&5), i < J.
> p, = "“expected proportion of non-zero edges”,
» the number of edges is of the order O(p,n?),

* pp, =1 dense case

* p, = 1/n very sparse
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Network Model

From a single observation of a graph

Problem 1:
Estimate the matrix of connection probabilities @ J
and
Problem 2:
Estimate the sparse graphon function fo(z,y) = pWo(z,y) J

© We observe the n x n adjacency matrix A = (A;;) of a graph

@ A has been sampled according to the inhomogeneous random graph

model with a fixed matrix ®q or to the graphon model with graphon
Wo

@ Given a single observation A, we want to estimate ®g or fp.
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Graphon: invariance with respect to the change of labeling

@ Graphon estimation is more challenging than probability matrix
estimation

@ Multiple graphons can lead to the same distribution on the space of
graphs of size n.

@ The topology of a network is invariant with respect to any change
of labeling of its nodes

@ We consider equivalence classes of graphons defining the same
probability distribution on random graphs.
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Loss function for graphon estimation

o Consider a sparse graphon f(x,y) = p,W(z,y)
o f(x,y) estimator of f(z,y)

@ The squared error is defined by

T e

M is the set of all measure-preserving bijections 7 : [0,1] — [0, 1]

Property (Lovasz 2012) J

d(+,-) defines a metric on the quotient space W of graphons.
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Minimax rate for sparse SBM in Frobenius norm

K., Tsybakov & Verzelen (2017)

ot o[-0l < (2 ).

@ p, =1: Gao et al.(2014), the minimax rate over T [k, 1]

k*  logk

n? n
k2
» k> y/nlog(k) : nonparametric rate —
n

log k
» k < y/nlog(k) : clustering rate o8
n
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From probability matrix estimation to graphon estimation

@ To any n x n probability matrix ® we can associate a graphon.

e Given a n x n matrix © with entries in [0, 1], define the empirical
graphon fg as the following piecewise constant function:

f@(x,y) = e(n:r‘\,fny]

for all z and y in (0, 1].

00 02 04 06 08 10

00 02 04 06 08 10

@ This provides a way of deriving an estimator of the graphon function
f(2) = ppW(-,-) from any estimator of the probability matrix ®.
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From probability matrix estimation to graphon estimation

e Empirical graphon f@(a;, Y) = Olna],[ny]-

@ For any estimator T of O :

B[#(5.0)] <28 | 5T - @ullp| + 28 [ (Fou. 1)

agnostic error

(from the triangle inequality). Here, f,f and fgo are empirical
graphons.
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Bound for the d-risk of step-function graphon
Step function graphons: For some k X k symmetric matrix Q and some
¢ :[0,1] — [k],

W(z,y) = Qpa),0(y) forall z,y€[0,1].

Theorem (K., Tsybakov and Verzelen, 2017)

Consider the p,-sparse step-function graphon model W' in WIk]. The
restricted LS empirical graphon estimator f satisfies

<7k;—z -+ logTSk)) + pﬁ\/E] :

E|9(f.5)] < |pn
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Sparse network estimation problem

@ The optimal rates can be achieved by the Least Squares Estimator
@ But: it is not realizable in polynomial time

@ Possible gap between the minimax optimal rate and the best rate
achievable by computationally feasible methods?

o Hard thresholding estimator
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Hard thresholding estimator

@ Achieves the best known rate in Frobenius distance in the class
of polynomial-time estimators

@ Singular value decomposition of A:

rank(A) T
A=""% i (A)u;(A)uy(A)

@ Tuning parameter A > 0:

©,= X (A)u;(A)v; (AT
A j:aj(A)z)\JJ( Juj(A)v;(A)

Singular value hard thresholding estimator of ©,.
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Hard thresholding estimator for sparse SBM

Theorem (K. & Verzelen, 2018)
With high probability

9

1~ B
“10x— Ol < Cyf22E
n n

where C' is a numerical constant.

@ Also minimax optimal in the cut distance
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Cut distance

@ Cut distance:
» Two random graphs with the same edge density are close
> Reflects global and local structural similarities

» Cornerstone in the limit graphs theory (Lovasz and Szegedy (2004),
Borgs et al (2008), (2012)):

* Every graph limit can be represented by a graphon

* A sequence (G,) of simple graphs is convergent if and only if it is a
Cauchy sequence in the cut metric.

o Estimating well the graphon Wj in the cut distance allows to estimate
well the number of small patterns induced by Wj
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Matrix cut norm

Matrix cut norm ( Frieze and Kannan (1999)):
Matrix A = (AZJ) € Rnxm

1
|Allo = = max

n2 S, TCln| "

i€8,j€T

e S=T,SNT=0orT =S5

1 1
Algp<—=||AlL £ —]|A
1Allo < =5 l1AlL < <Al

where [|A[l; = X [Ajj] and A2 = /S A
1’?] ,L?]
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Cut norm of graphons

Cut norm of graphons

Wio= sup / W (2, y)dedy
5,7C[0,1]

@ S and T measurable subsets
e S=T,SNT=0orT =25

o [Wio < W]l < [[Wll2 < [[W]leo <1
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Probability matrix estimation in cut norm

Minimax rate for sparse SBM in cut norm K. & Verzelen,

2018
i%f @06371_1[12”0”] Ee, H’(:) — GOHD} = min <\/§, pn>

o Faster than the minimax rate of convergence in Frobenius norm:

]. oy nl k \V4 ’ILk
inf sup Eeg, |:H@—®0H2:| xmin{(\/&—i- & ),pn}
® 0T k.pn] n n n

» Few blocks & < \/n: gain of log(k) factor
» Large k = \/n: gain of k/+/n factor
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Graphon estimation problem: step-function graphon

Thresholding empirical graphon estimator

Ew [5D (J?(:)A,foﬂ <C <Pn\/ %g(k) + \/%)

@ Empirical graphon associated to the hard thresholding estimator is
minimax optimal in the cut-distance.

@ Achieves best known convergence rates with respect to 9; and
do-distance among polynomial time algorithms.
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Link Prediction
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Link prediction

@ Networks are often incomplete: detecting interactions can require
significant experimental effort

@ Replace exhaustive testing for every connection by deducing the pairs
of nodes which are most likely to interact

@ Predict the probabilities of connections from partial observation of the
graph
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Maximum Likelihood Estimator

e Wolfe and Olhede (2013), Bickel et al (2013), Amini et al
(2013), Celisse et al (2012) , Tabouy et al (2017) ...

@ Also NP hard ...
o Computationally efficient approximations:

» Pseudo-likelihood methods

» Variational approximation

@ Quite successful in practice

Is MLE minimax optimal? )
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Convergence rate for the MLE
The conditional log-likelihood:

L:(A, @) = ZA” log(@m) + (1 — AU) log(l — @Z])
i<j

Theorem (Gaucher & K., 2019)
With high probability
2

o o Pn

0 0<7 < (O <pn<1

o O the best approximation among SBM to ®y in the sense of the
Kullback Leibler divergence

o Minimax optimal if v, < p,
Olga Klopp (ESSEC & CREST)
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Partial observations of the network

X € {0,1}5,; the sampling matrix:
X;j = 1 if we observe A;; and X;; = 0 otherwise

o Conditionally on ®¢, X is independent from the adjacency matrix A
e X;; are mutually independent

e IT € [0,1]2%" the matrix of sampling probabilities:

sym

X ind. Bernoulli(I1;;)
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Partial observations of the network

Particular cases:

@ node-based sampling schemes (e.g. the exo-centered design)
@ random dyad sampling schemes
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MLE with missing observations

The conditional log-likelihood:

Lx(A;0) =) Xij(Ajlog(®;) + (1 - Ajj)log(l — ©y)).

1<j

Theorem (Gaucher & K., 2019)
With high probability
2

1©0 — @H%H <C'py (ICH(GO, O) + (1—/)/)# (k* + nlog(k))) .

° |© — G)H%,H = Zij IL;;(© — @)?j

e Minimax optimal if ¢;p < II;; < cop [Gao et al, 2016 |

Olga Klopp (ESSEC & CREST) Sparse Network Estimation

31/33



Conclusion

Least Squares Estimator:

> attains the optimal rates in a minimax sense,
» not realizable in polynomial time

better choice: Thresholding estimator (slower rates of convergence)

o MLE:
» minimax optimal
» has computationally efficient approximations

o Link Prediction:

» MLE: enables rank unobserved pairs of nodes
» Minimax optimality of this approach
» Works for quite general sampling schemes
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