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Network model

Network analysis has become an important research field driven by
applications in social sciences, computer sciences, statistical physics,
biology,. . .

East-river trophic network [Yoon et al.(04)]

Approach

The modeling of real
networks as random graphs.

Model-based statistical
analysis.

Olga Klopp (ESSEC & CREST) Sparse Network Estimation 3 / 33



Graph Notations

A (simple, undirected graph) G = (E ,V) consists of

a set of vertices V = {1, . . . n}
a set of edges E ⊂ {{i, j} : i, j ∈ V and i 6= j}

2

3

4
5

1

A =


0 1 0 0 1
1 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0


The corresponding adjacency matrix is denoted A = (Ai,j) ∈ {0, 1}n×n,
where Ai,j = 1⇔ (i, j) ∈ E
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Sparsity

Main integral characteristics

number of vertices n

number of edges |E|

Maximal number of edges

n(n− 1)

2

Dense graph |E| � n2

Real world networks are sparse : |E| = o(n2)

I more difficult to handle
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Stochastic Block-Model (SBM) Holland et al. (1980)

Fit observed networks to parametric or non-parametric models of
random graphs.

SBM popular in applications: it allows to generate graphs with a
community structure

I Parameters:

F Partition of n nodes into k disjoint groups {C1, . . . , Ck}

F Symmetric k × k matrix Q of inter-community edge probabilities.

I Any two vertices u ∈ Ci and v ∈ Cj are connected with probability Qij .

I Regularity Lemma: basic approximation units for more complex
models.
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Non-parametric Model

SBM does not allow to analyze the fine structure of extremely large
networks, in particular when the number of groups is growing.

Non-parametric models of random graphs: Graphon Model

I Graphons are symmetric measurable functions

W : [0, 1]2 → [0, 1].

I Play a central role in the recent theory of graphs limits: every graph
limit can be represented by a graphon.

I Graphons give a natural way of generating random graphs.
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Graphon Model

Graphon Model:

I ξ = (ξ1, . . . , ξn) are latent i.i.d. uniformly distributed on [0, 1].

Θij = W0(ξi, ξj).

I The diagonal entries Θii are zero and Θ0 = (Θij)

I Given Θ0 the graph is sampled according to the inhomogeneous
random graph model:

F vertices i and j are connected by an edge with probability Θij

independently from any other edge.

I If W0 is a step-function with k steps, the graph is distributed as a SBM
with k groups.
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Sparse Graphon Model

The expected number of edges � n2 ⇒ dense case.

In real life networks often sparse

Sparse Graphon Model:

I Take ρn > 0 such that ρn → 0 as n→∞.

I The adjacency matrix A is sampled according to graphon W0 with
scaling parameter ρn:

Θij = ρnW0(ξi, ξj), i < j.

I ρn = “expected proportion of non-zero edges”,

I the number of edges is of the order O(ρnn
2),

F ρn = 1 dense case

F ρn = 1/n very sparse
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Network Model

From a single observation of a graph

Problem 1:

Estimate the matrix of connection probabilities Θ0

and

Problem 2:

Estimate the sparse graphon function f0(x, y) = ρnW0(x, y)

We observe the n× n adjacency matrix A = (Aij) of a graph

A has been sampled according to the inhomogeneous random graph
model with a fixed matrix Θ0 or to the graphon model with graphon
W0

Given a single observation A, we want to estimate Θ0 or f0.

Olga Klopp (ESSEC & CREST) Sparse Network Estimation 10 / 33



Graphon: invariance with respect to the change of labeling

Graphon estimation is more challenging than probability matrix
estimation

Multiple graphons can lead to the same distribution on the space of
graphs of size n.

The topology of a network is invariant with respect to any change
of labeling of its nodes

We consider equivalence classes of graphons defining the same
probability distribution on random graphs.
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Loss function for graphon estimation

Consider a sparse graphon f(x, y) = ρnW (x, y)

f̃(x, y) estimator of f(x, y)

The squared error is defined by

δ2(f, f̃) := inf
τ∈M

∫ ∫
(0,1)2

|f(τ(x), τ(y))− f̃(x, y)|2dxdy

M is the set of all measure-preserving bijections τ : [0, 1]→ [0, 1]

Property (Lovász 2012)

δ(·, ·) defines a metric on the quotient space W of graphons.
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Minimax rate for sparse SBM in Frobenius norm

K., Tsybakov & Verzelen (2017)

inf
Θ̂

sup
Θ0∈T [k,ρn]

EΘ0

[
1

n2

∥∥∥Θ̂−Θ0

∥∥∥2
2

]
� min

{
ρn

( log k

n
+
k2

n2

)
, ρ2n

}

ρn = 1 : Gao et al.(2014), the minimax rate over T [k, 1]

k2

n2
+

log k

n

I k >
√
n log(k) : nonparametric rate

k2

n2

I k <
√
n log(k) : clustering rate

log k

n

Olga Klopp (ESSEC & CREST) Sparse Network Estimation 13 / 33



From probability matrix estimation to graphon estimation

To any n× n probability matrix Θ we can associate a graphon.

Given a n× n matrix Θ with entries in [0, 1], define the empirical
graphon f̃Θ as the following piecewise constant function:

f̃Θ(x, y) = Θdnxe,dnye

for all x and y in (0, 1].
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This provides a way of deriving an estimator of the graphon function
f(·, ·) = ρnW (·, ·) from any estimator of the probability matrix Θ0.
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From probability matrix estimation to graphon estimation

Empirical graphon f̃Θ(x, y) = Θdnxe,dnye.

For any estimator T̂ of Θ0 :

IE
[
δ2(f̃

T̂
, f)
]
≤ 2IE

[
1

n2
‖T̂−Θ0‖2F

]
+ 2 IE

[
δ2
(
f̃Θ0 , f

)]
︸ ︷︷ ︸

agnostic error

(from the triangle inequality). Here, f̃
T̂

and f̃Θ0 are empirical
graphons.
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Bound for the δ-risk of step-function graphon

Step function graphons: For some k × k symmetric matrix Q and some
φ : [0, 1]→ [k],

W (x, y) = Qφ(x),φ(y) for all x, y ∈ [0, 1] .

Theorem (K., Tsybakov and Verzelen, 2017)

Consider the ρn-sparse step-function graphon model W in W[k]. The
restricted LS empirical graphon estimator f̂ satisfies

IE
[
δ2
(
f̂ , f

)]
≤ C

[
ρn

(
k2

n2
+

log(k)

n

)
+ ρ2

n

√
k

n

]
.
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Sparse network estimation problem

The optimal rates can be achieved by the Least Squares Estimator

But: it is not realizable in polynomial time

Possible gap between the minimax optimal rate and the best rate
achievable by computationally feasible methods?

Hard thresholding estimator
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Hard thresholding estimator

Achieves the best known rate in Frobenius distance in the class
of polynomial-time estimators

Singular value decomposition of A:

A =
rank(A)

Σ
j=1

σj(A)uj(A)vj(A)T

Tuning parameter λ > 0:

Θ̃λ = Σ
j:σj(A)≥λ

σj(A)uj(A)vj(A)T

Singular value hard thresholding estimator of Θ0.
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Hard thresholding estimator for sparse SBM

Theorem (K. & Verzelen, 2018)

With high probability

1

n
‖Θ̃λ −Θ0‖2 ≤ C

√
ρnk

n
,

where C is a numerical constant.

Also minimax optimal in the cut distance
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Cut distance

Cut distance:

I Two random graphs with the same edge density are close

I Reflects global and local structural similarities

I Cornerstone in the limit graphs theory (Lovász and Szegedy (2004),
Borgs et al (2008), (2012)):

F Every graph limit can be represented by a graphon

F A sequence (Gn) of simple graphs is convergent if and only if it is a
Cauchy sequence in the cut metric.

Estimating well the graphon W0 in the cut distance allows to estimate
well the number of small patterns induced by W0
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Matrix cut norm

Matrix cut norm ( Frieze and Kannan (1999)):

Matrix A = (Aij) ∈ Rn×n

‖A‖� =
1

n2
max
S,T⊂[n]

∣∣∣∣ Σ
i∈S,j∈T

Aij

∣∣∣∣
S = T , S ∩ T = ∅ or T = S̄

‖A‖� ≤
1

n2
‖A‖1 ≤

1

n
‖A‖2

where ‖A‖1 = Σ
i,j
|Aij | and ‖A‖2 =

√
Σ
i,j
A2
ij
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Cut norm of graphons

Cut norm of graphons

‖W‖� = sup
S,T⊂[0,1]

∣∣∣∣∣∣
∫
S×T

W (x, y)dxdy

∣∣∣∣∣∣
S and T measurable subsets

S = T , S ∩ T = ∅ or T = S̄

‖W‖� ≤ ‖W‖1 ≤ ‖W‖2 ≤ ‖W‖∞ ≤ 1
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Probability matrix estimation in cut norm

Minimax rate for sparse SBM in cut norm K. & Verzelen,
2018

inf
Θ̂

sup
Θ0∈T [k,ρn]

EΘ0

[∥∥∥Θ̂−Θ0

∥∥∥
�

]
� min

(√
ρn
n
, ρn

)

Faster than the minimax rate of convergence in Frobenius norm:

inf
Θ̂

sup
Θ0∈T [k,ρn]

EΘ0

[
1

n
‖Θ̂−Θ0‖2

]
� min

{(√ρnlog k

n
+

√
ρnk

n

)
, ρn

}
I Few blocks k .

√
n: gain of log(k) factor

I Large k &
√
n: gain of k/

√
n factor
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Graphon estimation problem: step-function graphon

Thresholding empirical graphon estimator

EW
[
δ�

(
f̃
Θ̃λ
, f0

)]
≤ C

(
ρn

√
k

n log(k)
+

√
ρn
n

)

Empirical graphon associated to the hard thresholding estimator is
minimax optimal in the cut-distance.

Achieves best known convergence rates with respect to δ1 and
δ2-distance among polynomial time algorithms.
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Link Prediction
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Link prediction

Networks are often incomplete: detecting interactions can require
significant experimental effort

Replace exhaustive testing for every connection by deducing the pairs
of nodes which are most likely to interact

Predict the probabilities of connections from partial observation of the
graph
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Maximum Likelihood Estimator

Wolfe and Olhede (2013), Bickel et al (2013), Amini et al
(2013), Celisse et al (2012) , Tabouy et al (2017) ...

Also NP hard ...

Computationally efficient approximations:

I Pseudo-likelihood methods

I Variational approximation

Quite successful in practice

Is MLE minimax optimal?
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Convergence rate for the MLE

The conditional log-likelihood:

L(A; Θ) =
∑
i<j

Aij log(Θij) + (1−Aij) log(1−Θij)

Theorem (Gaucher & K., 2019)

With high probability

‖Θ0 − Θ̂ML‖22 ≤ Cρn
(
K(Θ0, Θ̃) +

ρ2n

(1− ρn)2 ∧ γ2n

(
k2 + n log(k)

))
.

0 < γn ≤ (Θ0)ij ≤ ρn < 1

Θ̃ the best approximation among SBM to Θ0 in the sense of the
Kullback Leibler divergence

Minimax optimal if γn � ρn
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Partial observations of the network

X ∈ {0, 1}n×nsym the sampling matrix:

Xij = 1 if we observe Aij and Xij = 0 otherwise

Conditionally on Θ0, X is independent from the adjacency matrix A

Xij are mutually independent

Π ∈ [0, 1]n×nsym the matrix of sampling probabilities:

Xij
ind.∼ Bernoulli(Πij)
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Partial observations of the network

Particular cases:

node-based sampling schemes (e.g. the exo-centered design)

random dyad sampling schemes

...
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MLE with missing observations

The conditional log-likelihood:

LX(A; Θ) =
∑
i<j

Xij (Aij log(Θij) + (1−Aij) log(1−Θij)) .

Theorem (Gaucher & K., 2019)

With high probability

‖Θ0 − Θ̂‖22,Π ≤ C ′ρn
(
KΠ(Θ0, Θ̃) +

ρ2n

(1− ρn)2 ∧ γ2n

(
k2 + n log(k)

))
.

‖Θ0 − Θ̂‖22,Π =
∑

ij Πij(Θ0 − Θ̂)2ij

Minimax optimal if c1p ≤ Πij ≤ c2p [Gao et al, 2016 ]
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Conclusion

Least Squares Estimator:

I attains the optimal rates in a minimax sense,
I not realizable in polynomial time

better choice: Thresholding estimator (slower rates of convergence)

MLE:
I minimax optimal
I has computationally efficient approximations

Link Prediction:

I MLE: enables rank unobserved pairs of nodes
I Minimax optimality of this approach
I Works for quite general sampling schemes
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Thank You !


